

Agia Triada Tunnel Egnatia Highway, Section 4.1.1.s

Northern Greece

Project

Highway Tunnel

Construction Cost

Total cost: approx. € 9 m.

Project Schedule

Design: 2007 Construction: 2007-2008

truction: 2007–2008 Backfilling cross section of entrance portals

Project Description

Twin bore highway tunnel

 $\begin{array}{ll} \text{Length:} & 2 \text{ x } 350 \text{m} \\ \text{Excavation cross section:} & 105 \text{m}^2 \end{array}$

Excavation Method

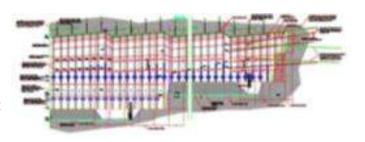
NATM – Mechanical means and spot drill & blast

Final Lining

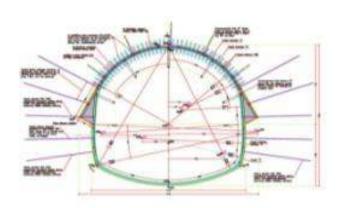
Reinforced concrete C20/25

Geology

Siltstones, sandstones, conglomerates Maximum overburden: 20m


Our Services

- Detailed geotechnical & structural design
- Detailed geotechnical & structural design of portals


Construction Details

- Use of forepoles
- Extended face support

Client

 $Longitudinal\,section\,of\,excavation\,and\,primary\,support\,of\,class\,\,F1$

Typical cross section of excavation and primary support of class $\mathsf{F1}$

Dorkada Tunnel

Highway Axis: Thessaloniki - Serres Promachonas,

Section 60.1.2

Northern Greece

Project

Highway Tunnel

Construction Cost

Total cost: approx. € 12 m.

Project Schedule

Design: 2005 Construction: 2005-2008

Project Description

Twin bore highway tunnel

Length: 2 x 480m Excavation cross section: 105m²

Excavation Method

NATM – Mechanical excavation, drilling & blasting

Final Lining

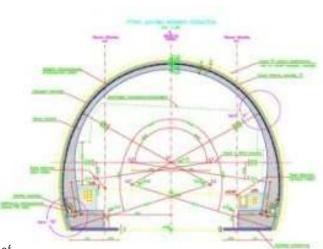
Reinforced concrete C20/25

Geology

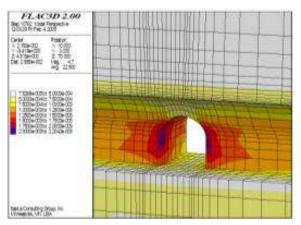
Gneisses, pegmatites, aplitic veins Maximum overburden: 30m

Our Services

- Detailed geotechnical & structural design
- Detailed geotechnical & structural design of tunnel's portals


Construction Details

- Construction of Elephant foot
- Extended face support


Client

View of portals

Typical cross section of final lining

3D distribution of stresses model

Panagia Tunnel Egnatia Highway, Section 4.1.1s

Northern Greece

Project

Highway Tunnel

Construction Cost

Total cost: approx. € 84,25 m.

Project Schedule

Design: 2003-2005 Construction: 2006-2008

Project Description

Twin-bore highway tunnel

Total length: 2 x 2670m Cross Section: 105m²

Driving Method

NATM – Mechanical excavation, drilling & blasting

Final Lining

Reinforced concrete C20/25

Geology

Siltstones, sandstones, peridodites, cherts, gabbro, schists, red pelites, tectonic melange Max. overburden: 250m

Our Services

- Detailed design of excavation, primary support and final lining, including all relevant works (portals, niches, lay-bys, cross passages, hydraulic arrangements)
- Supervision of geotechnical surveys and geotechnical evaluation along the two tunnel bores
- Elaboration of tender documents
- The designs were jointly elaborated by OMIKRON KAPPA CONSULTING & EDR GmbH, Munich

Construction Details

- Closed-ring solutions
- Stiffened primary support shell
- Design of the entrance portals with the Cover & Cut method, due to existing surface failures

Client

Entrance portals

Exit portal of the right bore

Agios Nikolaos Tunnel Egnatia Highway, Section 3.3

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 14,6 m.

Project Schedule

 Design:
 2000-2003

 Construction:
 2001-2006

Project Description

Twin bore highway tunnel

Total length: $2 \times 241 \text{m}$ Cross section: 105m^2

Method of tunnel excavation

NATM — drilling and blasting with occasionally mechanical excavation

Final Lining

Reinforced concrete C20/25

Geology

Flysch formation consisting mainly of thick bedded sandstones, intercalations of thin bedded siltstones & thin bedded sandstones and very soft shales Major water inflows

Max. overburden: 60m

Our Services

- Detailed geotechnical & structural design
- Supervision of construction

Construction Details

- Use of forepoles and spiles
- Special drainage measures

Client

Entrance portals

Excavated tunnel

Entrance Portals Cut&Covers

Kalamion Tunnel Egnatia Highway, Section 3.2

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 23,5 m.

Project Schedule

 Design:
 2000-2002

 Construction:
 2001-2005

Project Description

Twin bore highway tunnel

Total length: $2 \times 783 \text{m}$ Cross section: $105 - 150 \text{m}^2$

Exit portals

Method of tunnel excavation

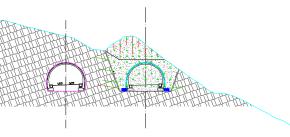
NATM — drilling and blasting with occasionally mechanical excavation

Final Lining

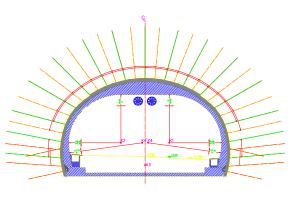
Reinforced concrete C20/25

Geology

Flysch formation consisting mainly of thick bedded sandstones Intercalations of thin bedded siltstones & sandstones and soft shales


Major water inflows

Max. overburden: 95m


Our Services

Detailed geotechnical & structural design

Client

Design of entrance portals

Tunnel cross section in the 3-lane part

Anilio Tunnel Egnatia Highway, Section 3.3

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 88 m.

Project Schedule

Design: 2001–2003 Construction: 2001–2006

Project Description

Twin bore highway tunnel

Total length: 2 x 1917m Cross section: 105m²

Method of tunnel excavation

NATM – Mechanical excavation, drilling & blasting

Final Lining

Reinforced concrete C20/25

Geology

Flysh formation consisting of sandstones and weak siltstones

Chaotic melange consisting mainly of weak and soft siltstones

Max. overburden: 250m

Our Services

- Detailed geotechnical & structural design
- Supervision of construction

Construction Details

- Flexible support by use of lattice girders with sliding joints in the highly squeezing parts of tunnel
- "Closed ring" solutions

Clients

- -SOTIROPOULOS & ASSOCIATES S.A.
- AKTOR S.A.

Entrance portals

Exit Portals

Tunnel with final lining

Anthochori Tunnel Egnatia Highway, Section 3.2

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 14,6 m.

Project Schedule

Design: 2001-2003 Construction: 2001-2005

Project Description

Twin bore highway tunnel

Total length: 2 x 673m Cross section: 105m²

Driving Method

NATM — Mechanical excavation with occasional drilling and blasting

Final Lining

Reinforced concrete C20/25 and C30/37

Geology

Very weak tectonically deformed silty or clayey shale forming a chaotic structure

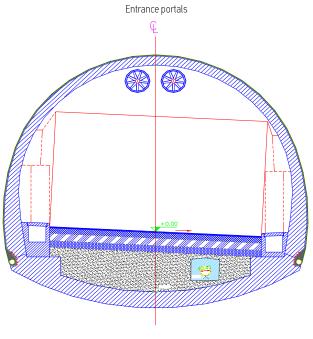
Thin layers of sandstones and siltstones, transformed into small rock pieces

Max. overburden: 90m

Our Services

- Detailed design of rehabilitation measures
- Redesign of the excavation, primary support & final lining
- Actual monitoring evaluation
- Supervision during construction

Construction Details


- Demolition and rehabilitation of the highly deformed existing support shell
- Intermediate lining

Client

Exit portals

Typical cross section

Driskos Tunnel Egnatia Highway, Section 2.3

Northern Greece

Project

- Highway tunnel
- Ventilation shaft

Construction Cost

Total cost: approx. € 129 m.

Project Schedule

Design: 1999-2001 Construction: 1999-2005

Project Description

- Twin bore highway tunnel

Total length: 2 x 4500m Cross section: 105m²

- Ventilation shaft

Height: 186m Cross section: 22.4m²

Method of tunnel excavation

NATM – drilling and blasting, mechanical excavation

Final Lining

Reinforced concrete C20/25

Method of shaft excavation

Top down construction except the last meters which will be excavated through the tunnel

Geology

Alterations of sandstones and siltstones with shear zones and faults

Max. overburden: 230m

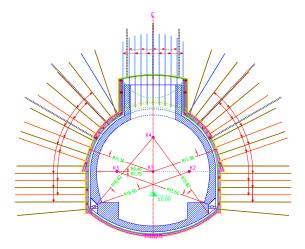
Our Services

- Detailed geotechnical & structural design
- Detailed geotechnical & structural design for the ventilation shaft

Construction Details

- Consolidation grouting
- Prestressed anchors

Clients


- AKTOR S.A.
- EGNATIA ODOS S.A.

Entrance portals

Driskos twin bore highway tunnel during a' phase excavation

Tunnel cross section in the position of the ventilation

Technical Works for Highway Tunnels

Smoke Extraction Shaft for Driskos Twin Bore Highway Tunnel Egnatia Highway, Section 2.3

Northern Greece

Project

Smoke Extraction Shaft for Driskos Twin Bore Highway Tunnel

Construction Cost

Total cost: approx. € 6 m.

Project Schedule

Design: 2003 - 2009 Construction: 2006 - 2011

Project Description

Smoke extraction shaft

Height: 190m Effective cross section: 19.5m² Max. excavation cross section: 34.8m²

Final Lining

Reinforced concrete C20/25

Method of shaft excavation

Conventional descending sequential excavation and primary support with hoisting of the excavated material (shaft shinking) and ascending final lining

Geology

Alterations of sandstones and siltstones with shear zones and faults

Internal shear sliding and failure

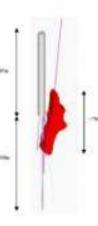
Max. depth: 190m

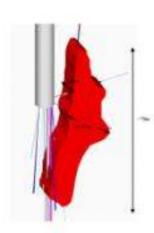
Our Services

- Detailed geotechnical & structural design
- Special designs for the investigation / detection of the failure zone
- Design of special measures for passing through the failure zone

Construction Details

- Consolidation grouting
- Water isolation grouting to minimize water inflows
- Shear keys
- Forepoles


Client



View of the smoke extraction shaft

Hoisting system

Estimated failure zone

S1 & S2 Tunnels Egnatia Highway, Section 1.1.6

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 29,3 m.

Project Schedule

 Design:
 2000-2002

 Construction:
 2000-2006

Project Description

Twin bore highway tunnels

Total length: 3108m Cross section: 105m²

Method of tunnel excavation

NATM — drilling and blasting with occasionally mechanical excavation

Final Lining

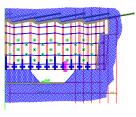
Reinforced concrete C20/25

Geology

Limestones highly brecciated Cataclastic limestones Evaporites Major fault zone Max. overburden: 120m

Our Services

- Detailed geotechnical design
- Supervision of construction


Construction Details

- Use of forepoles and spiles
- Grouted piles as face control

Client

PANTECHNIKI S.A.

Longitudinal section of primary support class with forepoles

S1 tunnel

S2 tunnel

S4 Tunnel Egnatia Highway, Section 5.2

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 13,2 m

Project Schedule

Design: 1998-2001 Construction: 2000-2003

Project Description

Twin bore two highway tunnel

Total length: 2 x 272m Cross section: 105m²

Method of tunnel excavation

NATM – Mechanical excavation

Final Lining

Reinforced concrete C20/25

Geology

Thin bedded marbles, gneisses and highly weathered schists with chaotic structure Max. overburden: 50m

Our Services

- Detailed geotechnical & structural design
- Redesign of entrance portal due to major active landslide

Construction Details

- Forepoling umbrellas in both top-heading and
- Extensive face support
- Very stiff temporary support shell

Client

Exit portals

Final lining construction works

Entrance portals

S3 Tunnel Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 88,1 m.

Project Schedule

Design: 2000-2004 Construction: 1999-2005

Project Description

Twin bore highway tunnel

Total length: 2 x 230m Cross section: 105m²

Method of tunnel excavation

NATM – mechanical excavation

Final Lining

Reinforced concrete C20/25

Geology

Phyllites limestones and soil materials in an active landslide area

Max. overburden: 35m

Our Services

- General geotechnical & structural design
- Design of rehabilitation and stabilization measures in a transnationally moving tunnel
- Structural design jointly elaborated by OMIKRON KAPPA CONSULTING & EDR GmbH, Munich

Construction Details

- Concrete anchored pile wall
- Prestressed permanent anchors applied from inside the tunnel at the area of the cracked invert
- Cement consolidation grouting applied from inside the tunnel

Client

AEGEK S.A.

Entrance portals

Tunnel fully excavated

Tunnel with final lining

S1 & S2 Tunnels Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 82,2 m.

Project Schedule

Design: 1999-2001 Construction: 1999-2003

Project Description

Twin bore highway tunnels

Total length: 2x840 & 2x315m

Cross section: 105m²

Method of tunnel excavation

NATM – Drilling and blasting, mechanical excavation

Final Lining

Reinforced concrete C20/25

Geology

Phyllites, sandstones Ground water Max. overburden: 120m

Our Services

- Detailed geotechnical & structural design
- Structural design jointly elaborated by OMIKRON KAPPA CONSULTING & EDR GmbH. Munich

Construction Details

- Face support with spiles
- Special drainage and bolting technique

Client

Cut & Cover entrance portals of S1 tunnel

S2 exit portals

Construction of final lining in S1 tunnel

S2.1 Tunnel Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 5 m.

Project Schedule

Design: 2001–2002 Construction: 2002–2005

Project Description

Twin bore highway tunnel

Total length: 2 x 287m Cross section: 105m²

Method of tunnel excavation

NATM – Drilling and blasting, mechanical excavation

Final Lining

Reinforced concrete C20/25

Geology

Phyllites, sandstones Max. overburden: 25m

Our Services

- Detailed geotechnical & structural design
- Structural design jointly elaborated by OMIKRON KAPPA CONSULTING & EDR GmbH, Munich

Client

Construction works for the landscape rehabilitation of the entrance portals

Entrance Portals

Nestos Tunnel Egnatia Highway, Sections 14.1.2 — 14.2.1

Northern Greece

Project

Highway tunnel

Construction Cost

Total cost: approx. € 6 m

Project Schedule

 Design:
 2001-2002

 Construction:
 2006-2007

Project Description

Twin-bore highway tunnel

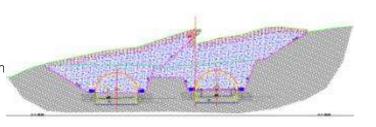
Total length: 2 x 310m Cross section: 105m²

Driving Method

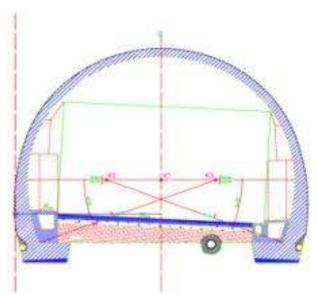
NATM — Mechanical excavation, drilling & blasting

Final Lining

Reinforced concrete C20/25


Geology

Marbles, schists, gneisses Max, overburden: 40m


Our Services

- Detailed design of excavation, primary support and final lining, including all relevant works (portals, niches)
- Design of hydraulic arrangements
- Design of landscape rehabilitation in the tunnel's portals

Client

Exit portal excavations works

Typical tunnel cross section

Cut & Cover

Landscape Rehabilitation of Tunnels portals

Greece

Project

Cut & Cover structures for the landscape rehabilitation of tunnels portals

Construction Cost

Total cost: approx. € 1-4 m.

Project Schedule

Design: 2000 - 2005 Construction: 2000 - 2005

Project Description

Cut & Cover

Total Length: 5 - 120m Cross section of horseshoe type

Geology

Schists, limestones Weak overthrust materials, sandstones Siltstones Groundwater

Our Services

- Detailed geotechnical & structural design
- Designs jointly elaborated by OMIKRON KAPPA CONSULTING & EDR GmbH. Munich

Clients

- EGNATIA ODOS S.A.
- AKTOR S.A.
- AEGEK S.A.
- EFKLIDIS S.A.
- J&P-AVAX(HELLAS) S.A.

AS1 tunnel entrance portal structure / cut & cover (Highway PATHE, Kakia Skala section)

S1 tunnel entrance portal cut & cover (Egnatia Odos, section 5.2-5.3)

Agios Nikolaos entrance portals cut & cover structures (Egnatia Odos, section 3.3)

Highway Bridges

G1 & G2 Bridges Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway bridges

Construction Cost

Total cost: approx. € 6 m.

Project Schedule

 Design:
 2001-2004

 Construction:
 2001-2004

Project Description

Twin bridges with central piers

Total length: 120 & 165m Maximum span: 80m Maximum pier height: 55m

Construction Method

- Foundation of the piers with retaining structures consisting of Berlin walls and anchored pile walls
- Foundation of the central piers in shafts with Ø12m and depth 22m

Geology

Phyllites

Our Services

Detailed design of the retaining structures as well as the foundation design of the piers and the abutments

Construction Details

- Geobrugg fences were installed to prevent loose material movement
- Stiff support shell applied to the foundation shafts

Client

G1 Bridge central pier foundation shaft

G1 bridge central pier foundation shaft retaining structure

G2 Bridge

High Embankment of Metsovo Interchange Egnatia Highway, Section 3.2

Northern Greece

Project

Highway embankment

Construction Cost

Total cost: approx. € 1,0 m.

Project Schedule

Design: 2000 Construction: 2002-2005

Project Description

Reinforced embankment with gabions combined with geogrids

Modulation geometry:

- Modulation of reinforced slopes with gradient 2:1 & 1.1
- All other slopes were modulated with gradient 1:2 Length: 110m
 Max. width: 90m
 Max. height: 50m

Geology

Flysch formation consisting of thick — bedded sandstones and red pelites

Our Services

- Detailed geotechnical design
- Construction drawings

Construction Details

- Construction of the embankment with use of sandstone material
- Strength of geogrids 400KNm
- Gabions dimensions 1m x 1m x 2m & 1m x 0,5m x 2m
- Length of the reinforcement bars 20m & 25m

Client

Western view of the embankment

South view of the embankment

Reinforced earth in the upper slope

G3 Embankment Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway embankment

Construction Cost

Total cost: approx. € 0,6 m.

Project Schedule

Design: 2001 Construction: 2002-2003

Project Description

Reinforced embankment with geotextiles Modulation geometry:

- Slopes with gradient 2:3 in the lower 25m
- Slopes with gradient 1:1 with benches per 10m of slope height, up to the embankment crest Length: 140m

Width: 50m Max. height: 70m

Geology

Phyllites, sandstones, schists

Our Services

- Detailed geotechnical design
- Construction drawings

Construction Details

- Placement of reinforced earth in the upper three slopes of the embankment
- Maximum length of geotextiles 50m
- Placement of geotextiles per 0.5m up to 1,0m

Client

AEGEK S.A.

View of the embankment during the construction phase

Downstream view of the embankment after the completion of works

Upstream view of the embankment after the completion of works

Travertine Embankment Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway embankment

Construction Cost

Total cost: approx. € 0,4 m.

Project Schedule

Design: 2000 Construction: 2000 - 2002

Project Description

Reinforced embankment with pre-constructed elements Modulation Geometry:

Slopes with gradient 2:3 Vertical slope of reinforced earth with height 10m

Length: 180m Width: 30m Max height: 38m

Geology

Travertine, loose soil materials

Our Services

- Detailed geotechnical design
- Construction drawings

Construction Details

- Embankment construction with travertine materials
- Use of reinforced earth of VSL type constituted of steel bars and pre-constructed concrete elements
- Reinforced earth length 10m
- Placement of reinforcements per 75cm

Client

Embankment view during construction

Embankment view after construction

Asomaton Embankment Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway embankment

Construction Cost

Total cost: approx. € 1 m.

Project Schedule

Design: 2003 Construction: 2003 - 2004

Project Description

Two-sided soil embankment for the replacement of a previous — failed embankment

Modulation geometry:

One slope with gradient 1:3 (upstream section) and with gradient 2:3 (downstream section)

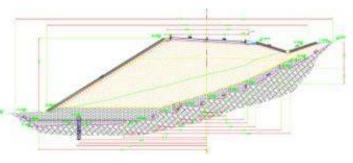
Length: 90m Width: 27m Max. height: 25m

Geology

Travertine, peridotite, loose soil materials, groundwater flows

Our Services

- Detailed geotechnical design
- Final geological and hydrogeological design
- Evaluation of previous failure
- Design of foundation works for the new embankment
- Design and support of the new embankment


Construction Details

- Embankment foundation in one row of piles Ø1,00/1,30, with 16m length combined with cap beam, in the area of the failure surface
- Construction of a riprap layer of thickness 1,5m in the embankment base for the drainage of the groundwater

Client

View of the embankment failure

Typical cross section after the failure rehabilitation

G6 Embankment Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway embankment

Construction Cost

Total cost: approx. € 0,15 m.

Project Schedule

Design: 2000 Construction: 2001-2002

Project Description

Rock fill embankment Modulation Geometry Slopes with gradient 2:3 of maximum height 20m with intermediate bench with 4m width Length: 141m Width: 40m Max. height: 50m

Geology

Alterations of gneisses and mica schists

Our Services

- Detailed geotechnical design
- Construction drawings

Client

AEGEK S.A.

Downstream view of the embankment

Excavation Works

Metsovo Connecting Road Egnatia Highway, Section 3.2 – 3.3

Northern Greece

Project

Highway general excavation works

Construction Cost

Total cost: approx. € 1,5 m.

Project Schedule

Design: 2000 - 2001 Construction: 2003 - 2005

Project Description

Permanent one-sided and two-sided slopes with support measures and retaining walls, according to the stability conditions

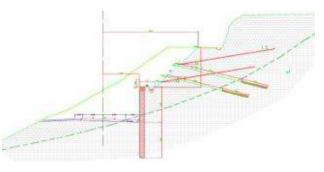
Max. length: 430m Max. height: 11m - 40m

Geology

Flysch formation consisting of thick — bedded sandstones, siltstones and red pelites

Our Services

Detailed geotechnical & structural design


Construction Details

- Design of special rockfall protection barriers
- Installation of prestressed anchors and special grids for the protection of the slopes against corrosion
- Design of retaining walls and pile walls

Client

Installation of rock bolts and special grids for the slope protection against corrosion

Typical excavation cross section

Excavation Works

Egnatia Highway, Section 5.2 - 5.3

Northern Greece

Project

General excavation works for the foundation of bridges

Construction Cost

Total cost: approx. € 0,3 m.

Project Schedule

Design: 2002 Construction: 2002

Project Description

Modulation of slopes of height up to 15m

Geology

Blocky phyllites, sandstones and limestones

Our Services

Detailed geotechnical design of excavation and support

Construction Details

- Installation of prestressed anchors
- Installation of geobrugg TECCO grids for the protection against corrosion of the slopes and to prevent loose material movement

Client

Excavated slopes in the area of the foundation of G1 bridge

Geobrugg TECCO type grids installation works

Embankments

Egnatia Highway, Section 5.2-5.3

Northern Greece

Project

Highway embankments

Construction Cost

Total cost: approx. € from 0,15 to 0,6 m.

Project Schedule

Design: 2001-2002 Construction: 2000-2003

Project Description

Embankments constructed with rock fill or reinforced with geotextiles, geogrids and preconstructed elements

Maximum heights: 30-70m

Geology

Phyllites, travertine, sandstones

Our Services

Detailed geotechnical design

Clients

- AKTOR S.A.
- AEGEK S.A.

G6 rock fill embankment, maximum height 50m

G3 reinforced embankment, maximum height 70m

Reinforced earth embankment constructed with travertine materials and preconstructed reinforced elements, maximum height 38m

Special Geotechnical Applications

Jet Grouting Diaphragm Wall Egnatia Highway, Section 2.4 — 3.1

Northern Greece

Project

Jet grouting diaphragm wall, for the reduction of water inflows in order to construct the foundations of M2 to M6 piers of T10 bridge at Metsovitikos River

Construction Cost

Total cost: approx.€ 6 m.

Project Schedule

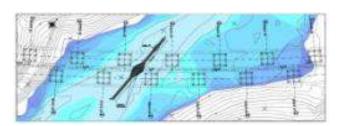
Design: 2007 Construction: 2007-2008

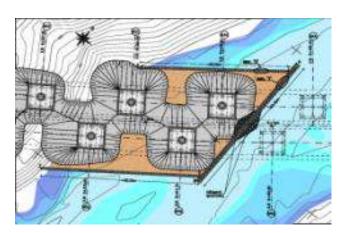
Project Description

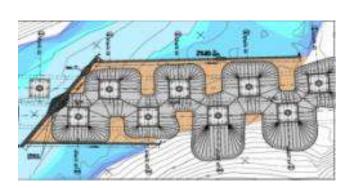
- Jet grouting diaphragmatic wall with secant ground piles
- Central diaphragm wall, with 3 rows ground piles
- 4 additional diaphragm walls at the foundation areas of the piers
- Diameter: Ø 80, Length 10m-20m
- Total walls length: 365m

Geology

- Riverbed deposits (sands, breccia argillaceous materials)
- Conglomerates with high permeability
- High river flood discharge
- High groundwater table


Our Services


Detailed geotechnical design


Construction Details

- Dam construction for the arrangement of the riverbed
- Rip rap construction for the protection of the main diaphragm wall

Client

Jet grouting construction stages

Hydraulic Tunnel

Kostarakos Hydraulic Diversion Tunnel Egnatia Highway, Section 3.3 — 3.5.1

Northern Greece

Project

Hydraulic tunnel

Construction cost

Total cost: approx. € 2,2 m.

Project Schedule

 Design:
 2006 - 2007

 Construction:
 2007

Project Description

Hydraulic diversion tunnel of Kostarakos stream

Length: 310m Maximum overburden: 45m Effective cross section: 19,8m²

Excavation Method

NATM – Drilling & blasting and mechanical means

Final Lining

Reinforced concrete C20/25 in tunnel's sides Gunite C25/30 in crown section

Geology

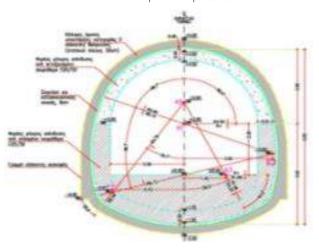
Peridotites, serpentinized peridotites, serpentinites, tectonic melange

Our Services

- Detailed geological geotechnical design
- Detailed geotechnical & structural design of tunnel and portals

Construction Details

- Use of forepoles and spiles
- Stiff temporary support by using steel sets of HEB type
- Support by use of anchors and shotcrete
- · Closed ring solutions


Client

Entrance portal general view

Peridotites – seprentinized peridotites

Final lining typical cross section

Hydraulic Tunnel

Hydraulic Drainage Tunnel for the stabilization of the landslide in the Big Cut area Egnatia Highway, Section 3.3 — 3.5.1

Northern Greece

Project

Hydraulic tunnel

Construction cost

Total cost: approx. € 3 m.

Project Schedule

Design: 2008 Construction: 2008

Project Description

Hydraulic drainage tunnel for the stabilization of the landslide in the Big Cut area

Length: 520m Maximum overburden: 100m Effective cross section: 19,8m²

Excavation Method

NATM – Mechanical means

Final Lining

Reinforced concrete C20/25

Geology

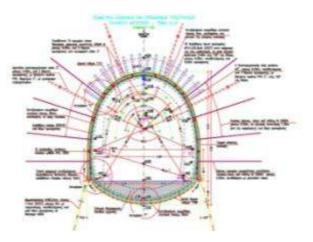
Peridotites, serpentinized peridotites, serpentinites, tectonic melange

Our Services

Detailed geotechnical & structural of the tunnel and portals

Construction Details

- Use of steel sets of HEB type
- Use of anchors and shotcrete
- Micropiles for shotcrete shell's foundation improvement
- Closed ring solutions


Client

Hydraulic drainage tunnel entrance portal

Excavated tunnel

Excavation and primary support Cross section